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Abstract

In this paper, it is shown that a one-dimensional Hamiltonian with an attractive
delta potential at the origin plus a mass jump at the same point cannot have
a bound state, as is the case with the ordinary attractive delta potential with
constant mass, unless another term is added into the potential in the form of
a derivative of the Dirac delta at the origin. The consistency of this singular
potential with two terms is guaranteed by choosing suitable matching conditions
at the singular point for the wavefunctions. Furthermore, it is proved that the
self-adjointness of the Hamiltonian with both singular interactions determines
the coefficient of the derivative of the delta in a unique manner. Under these
conditions, the bound state and its energy are obtained and it is checked that
the correct results in the limit of equal masses are obtained.

PACS numbers: 03.65.—w, 03.65.Db, 03.65.Ge

1. Introduction

The consideration of Hamiltonians with variable mass in non-relativistic quantum mechanics
is an old problem that has recently attracted a lot of attention [1]. When the mass is not a
constant, but depends on the position, m(x), it has to be considered as a position-dependent
operator not commuting with the momentum operator p. Therefore, the kinetic term K of the
Hamiltonian cannot be written in the usual way, being the most generally accepted form of
H=K+V][2]

H=K+V=1im*@)pmPx)pm*x)+V(x), (1)
with 2« + 8 = —1. Note that the usual form of the kinetic energy is recovered for constant
mass.

Physical systems with an abrupt discontinuity of the mass at one point are modeling the

behavior of a quantum particle, i.e. an electron, moving in a media formed up by two different
materials. On each of the materials the particle behaves as if it had a different mass. The
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discontinuity point represents the junction between these two materials. This situation is
largely discussed in the literature, particularly in our references [1, 2].

The simplest model of such a situation is given by a one-dimensional system in which
the mass is constant except for a finite jump at one point, which is taken to be the origin for
simplicity. This is the situation we are going to consider along the present paper. In addition,
we shall also consider the presence of a singular potential at the origin. This is a kind of
situation that, up to our knowledge, has not been studied before. As in the case of point
interactions with constant mass [3—5] or mass jump at the origin without singular interactions
[6], the self-adjointness of the Hamiltonian is determined through matching conditions at the
origin. The present study is a combination of both situations, which can be not only instructive
but will also enrich our knowledge on solvable systems.

This is precisely the aim of the present paper, in which we study the behavior of a Dirac
delta well centered at the origin, having a mass jump at the same point. This model is interesting
as it combines a point interaction with a mass jump, it is exactly solvable, it has a unique bound
state (as in the case of the delta well with constant mass) and provides an unexpected surprise:
the bound state cannot survive without the existence of an additional 8’(x) component in the
potential. Furthermore, this coefficient b is not arbitrary, but it depends on the masses at one
side and the other of the origin. The precise form of this coefficient b has its origin in deep
mathematical reasons: the matching conditions that determine the self-adjointness of the total
Hamiltonian. This latter fact is not trivial as it shows how a property that is often considered
as a mathematical subtlety has physical consequences.

We will study the Hamiltonian given in equation (1) with

V(x) = —ad(x) + b8’ (x), a>0, Q)

from two different points of view, both based on physical grounds. In both cases, we obtain
different values for the energy of the bound state. This is because these two different treatments
are based on two different versions of the kinetic energy term K. The former, studied in
section 2, uses the K as given in equation (1). The second one is somewhat simpler and is
considered in section 4. In the equal mass limit m; = m, = m, both cases give the same
results, which coincide with those obtained for H = p?/2m — ad(x) + b8’ (x) (see [7]).

It is important also to mention that, even in the constant mass case, the potential term
bé&'(x) was a subject of controversy due the use of different matching conditions at the origin
for the functions in the domain of the Hamiltonian. Here, we will use the matching conditions
proposed by Kurasov [3] because

(i) they do not lead to unphysical results such transmission or reflections coefficients equal
to zero [8, 9];
(ii) they allow us to combine properly the two distributions §(x) and §"(x);
(iii) they allow us to multiply both §(x) and 8’(x) by functions discontinuous at the origin
(note that, due to the mass jump, the functions in the domain of the Hamiltonian are
expected to have a discontinuity at the origin).

This paper is organized as follows. In the next section, we study the Schrédinger
equation associated to the Hamiltonian with a mass jump at the origin plus the mentioned
delta interactions using our first approach. We shall find the bound state for this system and its
energy. In section 3, we shall show how the condition of self-adjointness of the Hamiltonian
determines the value of the coefficient of §'(x) uniquely in terms of the values of the mass.
In section 4, we analyze a second interpretation of the kinetic term with a mass jump and a
singular potential of the form (2), and discuss results and properties. Finally, we end the paper
with the most relevant conclusions.
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2. The formal Hamiltonian and its eigenvalue problem

The object of our study is the eigenvalue problem relative to a one-dimensional Hamiltonian
with an attractive delta well and a mass jump at the origin. In principle, this Hamiltonian has
the form

B = Lm0 pmP () p m () — ab(o), @
with 2o + 8 = —1,a > 0 and

my, x <00,

4)

mx)=mH(—x)+myx)H((x) = {MQ =0

where H (x) is the Heaviside step function, whose derivative is the Dirac delta §(x). Due to
reasons that will become obvious later, we shall study instead a slightly more general situation
in which an additional §’(x) term is added to the Hamiltonian (3), which then takes the form

H= %m“(x)p mP (x)p m®(x) — ad(x) + b8 (x), 5)
with b € R. The formal Hamiltonian (5) gives the following Schrédinger equation:
5m®(x) pm” (x) pm® ()Y (x) — a8(¥) Y (x) + b8 ()Y (x) = Ev(x). (6)

Expression (6) is an equation in ordinary distributions. However, we note that the solution
¥ (x) should have a discontinuity at the origin due to the mass jump [6]. Then, we adopt the
following definitions for the product of a function and a Dirac delta:

vOH+y0-)

Y (x)8(x) = 3 (x), (7
0 0— (0 '(0—
V()8 (x) = ¥ ( +);l/f( )8/(x) AL +);W( )S(x), )

where 1 (0+) and ¥ (0—) denote the right and left limits, respectively, of 1 (x) at the origin.
Same notation is used for the derivative. These definitions have been given already in [3].
However, we should note that in our case (7) and (8) can be looked as ordinary distributions
(with test space of continuous smooth functions) and not as distributions on a test space
of discontinuous functions at the origin as in [3]. Then, we can look at the Schrodinger
equation (6) as an equation on ordinary distributions.

Since the solution of (6) should have a discontinuity at the origin, it must have the
following form:

Vv (x) = i) H(=x) + f2(x)H (x), €))

where, without loss of generality, we can assume that f;(x),i = 1, 2, are continuous functions.
The kinetic term in (6) can be written as

Rl o, od 4 d
K (x) =-7 [m (x)am (x)am (X)I/f(x)} . (10

If we define

F&) =m0y (x) =m{ fi(x) H(—x) + m5 f(x)H(x), (1)
and we apply (7), we get

d
/= m§ f{(x)H (=x) +m§ f5(x)H(x) + (m5 f2(0) — m$ £1(0))8 (x). (12)
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If we multiply (12) by mf (x) = mﬂH( —Xx) +m;, H(x) and use again (7), we get

df a+fB a+f f+m§
mﬁ(x)a =m{"" f{(x)H(=x) +m3™" f,(x)H (x) + [m$ f2(0) — fl(O)] 3(x).

If we derive this expression and multiply the result by m®(x), we obtain
d d o 20
(@) - mP () = 0 =y F @O H 0 +m 0 H @)

+(m5™ f30) = m{™ F{00) m* () §(x)
B B
my +m ,
+[m5 £200) = mi O] m (0 8'(x). (13)
Now, we apply (7) and (8), respectively, in the second and third line of (13), and therefore the
Schrédinger equation (6) reads

hZ 1 ” H 1 ” H a+p 1 0 ﬂ 0 2 S
- m_lfl (x) (—X)+m—2f2(x) (x) + [m5™ £300) — m{™" £( )] 2 (x)
B, B . a
+[mg £200) — m% (0] ;m2 al ;’mz 5’@)} _a M 8(x)
b f1(0) ‘2F £2(0) 5'(x) — bf{(()) ;‘ £2(0) 500)
= E[fi(x)H(—=x) + fo(x)H (x)]. (14)

From here, and taking into account that we are looking for the bound states (£ < 0), we obtain
the following set of equations:
2

h

o /(x) = Efi(x) = fi(x) = ye* (15)
h2

" m, [ (x) = Efs(x) = fo(x) =yoe ™ (16)
n? a+B a+5 m§ +m2 a b

=5 [ £ = w7 £0)] — 510+ L0) = S(HO) + £0) =0

(17)

h2 o o B B b

2 [ A0 —mg @] T TR L 2 (0)+ 0 =0, as)

where y # 0 is the normalization constant of the wavefunction (9), o is another constant that
will be determined immediately and k; = \/—2m,-E/h2, i = 1,2. From (15) and (16), we
see that (6) has square integrable solutions and therefore bound states that we are going to
determine in the sequel. In addition, we have

f100) =y, 2(0) = yo, 1) = yki, [0) = —yok. (19)
As a consequence of (19), (18) can be written as

2

—%[mgo —m§](m$ +m‘§‘)(mf +mg) +b(1+0)=0. (20)

After (20), we can fix uniquely the value of o in terms of the initial parameters of the problem
to be
B B
U=_4b+h2m‘f(m‘f+mg)(m1 +m2) 2
4b — hzm‘; (m‘i‘ + m%‘) (m? + mzﬂ)
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If m; = m, = m, and taking into account that 2« + § = —1, we have that
h? +mb @)
00 = 55—,
TR —mb
which is the result we obtain if we had operated directly without the mass jump.
On the other hand, from (19) and (17), one obtains
hz o o
?[m;ﬁakg +m k| (m§ +mg) — a(l +0) — bk — oks) = 0. (23)
If we call u = /—2E /h*, ki = . \/m;, and then from equation (23)
2a(1 +
- 1/2 2 atp al G?/z 2 i . (24)
om, [Zb +hm, (m‘f‘ +m§‘)] —m, [Zb —h"m, (m‘f‘ + mg)]
This expression readily gives the value of the energy E = —7?u?/2 for the unique possible

bound state coming from the solution of the equations (15)-(18). However, as we shall see
later, the condition for the self-adjointness of the Hamiltonian (5) determines that b, that in
principle can be considered as a free parameter or as an initial datum of the problem, can
have only one value (up to a sign). In the limit m; = m, = m, one readily obtains from (24)
and (22)
2,2 276
EO:_h JIrs 2_1 ma“h ’ 25)

2 2 (h* + b2m?)?
which is the expression one obtains through a direct calculation (see [7] taking i = 1).

Obviously, since j in (24) is real and E = —h%u?/2, the energy of the unique bound
state is always negative (except if @ = 0, a case in which no bound state is present). From (9),
(15) and (16), the eigenfunction of the bound state is precisely

Y (x) = y[e" H(—x) + o e H(x)], (26)

where o is given in (21) and y is the normalization constant, whose precise value is not
relevant for the rest of this work.

Note that if we make the substitution m| <> m, and change b by —b, then o is changed
into 1/0. A simple calculation shows that x remains invariant under these operations. This
shows that our model is symmetric with respect to the interchange of the notions of left and
right, for which we have to interchange the value of the masses plus the sign of b (note that
8’(x) is an odd distribution).

In the next section, we shall study the constraints coming out after imposing the self-
adjointness of the Hamiltonian (5) we are working with.

3. Self adjointness of the Hamiltonian and its consequences

In arecent work [6], we have characterized the set of all the self-adjoint extensions of a type of
Hamiltonian with non-constant mass as in equation (42) below. It is well known that singular
interactions can be obtained from self-adjoint extensions of symmetric operators with equal
non-zero deficiency indices [3—5]. This is exactly what happens in the present case, where we
have the symmetric operator associated with the kinetic energy, K = %m“ (x) pmP (x) pm® (x),
with domain

Dy = {¥(x) € WiR) /¥ (0) = ¥'(0) = 0}. 27
Here, W22 (R) is the space of continuous functions from R into C such that

(1) any f(x) € W22 admits a first continuous derivative;
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(ii) the second derivative exists almost everywhere (a.e.);
(iii) both f(x) € WZ2 and its second derivative a.e. are square integrable, so that

/ {fEPF + ")} dx < oo.

The adjoint of K, KT, has domain D* = W22 (R/{0}). The functions in W%(R/ {0}) satisty
the same properties of the functions in W3 except that they and their derivatives may admit a
finite jump at the origin.

It is straightforward that K has deficiency indices (2, 2) and therefore it has an infinite
number of self-adjoint extensions. These self-adjoint extensions are restrictions of KT to
certain subdomains, which are determined by the matching conditions at the origin.

Let ¢, ¢ € D*. A simple calculation shows that

(VIKTp) =G+ (K'yl), (28)

with
n? n?

G =~ [0 (0-)¢/(0=) = ¥ (0=)p(0-)] + 5[/ (0)¢ (0+) — " (O (O+)].
mi 2m2

We recall that ¢ (0+) and ¢ (0—) are the right and left limits of i (x) at the origin. This
expression for G can be written in the matrix form as

_ x e ¢(0-) * # ¢(0+)
G=—-W O,y 0-)M, <¢,(0_)) + (W7 (0+), ¥y (0+) M, ((p’(0+))’ (29)
with
oo 1 ,

Mi = 2—’/’11 (_1 0> . 1 = 1, 2. (30)
The matching conditions at the origin, for an arbitrary function v (x), are given by a 2 x 2
matrix as

YO _ . (¥(0-) _(A D
(Vom) =7 (pios) 7=(5 ) ey

where A, B, C and D are complex numbers, not yet known.

In order to find the self-adjoint extensions of K, we need to find subspaces of D* for which
G = 0 nontrivially. This can be done by giving suitable matching conditions at the origin.
From (29) and (31), one obtains that G = 0 if and only if

* * 0—
W0, " 0-pi-d+ 7T (507 ) 0. (32)
Note that T is the adjoint matrix of 7, i.e. its transpose and complex conjugate. Since v/ (x)
and ¢(x) are arbitrary functions, so are their boundary values. Then (32) holds if and only if

M, =T'M,T. (33)
From (33) and (30) one readily obtains

detT) = 22, (34)
nmi

which is a necessary condition for the matching conditions given by T to determine a self-
adjoint extension of K. The matrix 7 give the matching conditions at the origin and determines
a dense subspace D of L*(R) of continuous functions except at the origin. The discontinuities
of the functions and their first derivative at the origin are given by T through (31). The
restriction of KT into D determines a self-adjoint extension of K if and only if T satisfies (33).

6



J. Phys. A: Math. Theor. 42 (2009) 465207 M Gadella et al

3.1. Matching conditions

In order to determine the explicit form of 7 in our case, let us go back to (9) and note that
¥ (0+) = f2(0), ¥'(0+) = £;(0), v (0-) = f1(0), ¥'(0-) = £{(0). (35)

We already know from (15)—(16) that ¥ (0+) = oy (0—), so that in the matrix 7 in (31) we
have that A = o and D = 0. Entries B and C are then easily calculated from (17) so that

2a(l+o0)

2+ 12mS P (m + mg)

(36)

and
2b — 12m“*f (m® + m¢
C=- 2 oi+ﬂ( oi j) (37
2b +1*m3"" (m§ +mg)
In the limit of equal masses, m| = m, = m, we obtain this known result [7]:
K2 +mb
h? — mb 0
To = N . (38)
T —2amn® w2 —mb
n* —m2b2  h?+mb
This matrix T} in (38) gives the boundary conditions that define the domain of self-adjointness
of the operator H = p2/2m —ad(x) +bd'(x),a > 0, as given in [3].

As we have anticipated, not all values of b are compatible with the self-adjointness of the
Hamiltonian. The coefficients of the matrix 7T'in (31) are: A = o is given in (21), B and C are
given in (36) and (37), respectively, and D = 0. Since the coefficients are all real numbers,
we can write equation (33) as

my (0 1\ _(A B\[(0 I1\(A 0\ _( 0 AC %
m (o) ) o) G o)=(e B)

ac="2 (40)
mi

from where

Using the values of A and C given in equations (21) and (37), equation (40) turns out to be a
constraint that gives only two possible values for b:

B B
b — O, b — hz m? +mg ml _ m2 m(iH—l _ mg+1 (41)
2 2 np —mp

The well-known solution with b = 0 (delta well) appears directly from our study, but we see
that a new option with b # 0 as in (41) also arises in a natural way, which is a very interesting
and novel result coming from our study. In the limit of equal masses, m; = m, = m, the
equation that results after (40) is satisfied identically, and no restriction on the possible values
of b is obtained. Conversely, from the second identity in equation (41), we see that b = 0
implies m; = m,. Therefore, the mass jump cannot exist with the term —ad(x) only, unless
the term bé§’(x) is present.

4. Another self-adjoint extension of the Hamiltonian

The approach for the solution of the eigenvalue problem for mass jump Hamiltonian given in
section 2 seems to be the most logical one although is not the only possible. Indeed, the mass

7
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jump of equation (4), in combination with the usual form of the kinetic term ﬁ p?, suggests
that we could express the kinetic term in the following form:

1 & £ 0
. s " om, dx? =y
k== 2';11 d;g (42)
M(X) o ——2 @ if x> 0,
ny

which is obviously independent of the the order parameters o and 8. The analysis of self-
adjoint extensions for (42) does not differ of the study given in section 3. In particular,
functions in the domain of its self-adjoint extension have to fulfill matching conditions (31),
where the matrix 7 fulfills (33). A complete discussion about these extensions is given in
[6]. Then, if we use the form (42) for the kinetic operator, the Schrodinger equation for the
potential (2) can be written as

N 2 g2 A
Hy(x) = I:—m @ —ad(x) + b5'(x)i| Y(x) = EY¥(x) (43)
or

2
TIZ% V(x) = —2m(x) a (X)W (x) + 2m(x) b &' (x)¢ (x) — 2m(x) Eyr(x), (44)

where we have denoted as £ the eigenvalue of the energy for the present choice. Our goal is
to solve this Schrodinger equation. Should it have a square integrable solution (bound state),
it must have the form ¥ (x) = f;(x)H(—x) + f>(x)H (x), given in equation (9) of section 2.
Equation (44) should be again an equation of distributions (as was (6)) in which the product of
discontinuous functions at the origin by deltas is defined as in (7)—(8). If we derive (9) twice,
insert the result into (44), recall (35) and use (8), we obtain

v'(x) = fl(O)H(=x) + fy ) H(x) + [ (0+) — ' (0-)18(x) + [ (0+) — ¥ (0—)]8"(x)
2F
= —h—z[nufl (X)H(—=x) +my fo(x)H (x)] — %[mu/f(o—) +mar (0+)]18(x)

b
+ F?[[ml ¥ (0=) + mayr (04)18" (x) — [m1y'(0—) + mayy’ (04)18 (x)]. (45)

Then, we equalize the coefficients of H(—x), H(x), 8(x) and §'(x). As in section 2, this gives
a system of four equations:

2m E . . N
— ) = ”;—;fl @) = fitx)=pek*, k= —2Em/m?, (46)
2mo E . . N
—fi(x)= n;—;fz(x) = fLrlx) =71 g kr ky =/ —2Em, /02, 47)
12 (0+) — ¥/ (0=)] = a(m W (0—) + mayr (04)) + blm ' (0—) + mayy' (04)], (48)
R2[Y (04) — ¥ (0—)]1 = blm ¥ (0—) + mayr (04)], (49)

where p and t are constants. The first two equations of the previous system, (46)—(47), are
similar to (15)—(16), but we have used different integration constants for giving their square
integrable solutions. Note that (49) can be written as

h?+mb

¥ (0+) = . — ¥ (0-), (50)

2—I’I12b
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or equivalently
_ YO -y,
may (0+) +my (0—)

Equation (50) gives the jump at the origin of any possible square integrable solution of the
Schrédinger equation (44). To obtain the jump of the first derivative, we use (48) to get

(D

¥ (04) = M (0 + ﬂ '(0-). (52)
ht — K2 +myb
Equations (50) and (52) can be written together in matrix form as
W2 +mb 0
¥ (0+) A 0\ (y(0-) h* — mab ¥ (0-)
(w’(0+>> = (fe c) (x/ﬂm—)) | —ar2my +ma) B —mb <w'(0—>>' (53)
nt — m3b? h? + mab

The matching conditions given by (53) are not only satisfied by the bound state of A but also
characterize the domain of a self-adjoint extension of K that can be written as A = K + V(x),
where V (x) is the singular potential with support at the origin given in equation (2). However,
b cannot be arbitrary, as we shall see later.

4.1. The value of the energy for the bound state

Our next goal is to obtain the explicit expression for the energy E of the bound state. Taking
into account that from equations (46)—(47)

¥ (0-) = p, ¥'(0-) = pki, Y (0+) =1, V' (04) = —7ha, (54)
equation (53) yields
A+ B+kC =0. (55)

Then, we use in (55) the relations between k; and E given in (46)—(47) and the values of A, B
and C given in (53), we finally get the following expression for the eigenvalue £:

h_2 (my + m2)2a2h4
2 [(h* — mib)(h* — myb) Jmy + (B* + mb)(W* + myb) Jma)

Thus, the eigenvalue problem is solved for the chosen self-adjoint extension # of K. We
have found that A has a unique non-degenerate eigenvalue. The corresponding eigenvector is
given by (46) and (47) as

U (x) o [(B2 — mab) eh* H(—x) + (h2 +mb) e H(x)]. (57)

E=— (56)

Finally, let us enumerate some properties that follow straightforwardly from the discussion
above.

(i) Formula (56) is not symmetric with respect to the interchange of m; and m,, but is
symmetric with respect to the interchange of the notions of left and right for which we
have to interchange the value of the masses as well as the sign of b. This is the same
behavior as the energy (24) in the previous case discussed in section 2.

(i) In the equal masses limit, m; = m, = m, equation (56) gives exactly the same equal
masses limit obtained in section 2, see equation (25), which is the only eigenvalue of the
Hamiltonian H = % —ad(x) + bd'(x) witha > 0, b € R, with fixed mass m > 0, as
defined in [3].
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(iii) In the present case, formula (40) takes the form

h4 _ 2b2
bomy @ (58)

This gives
h4

e
=2 2 :
my +m5 +mymy

(59
If m; = my, (58) is an identity and (59) makes no sense. If m; % my, this result shows
that (53) does not determine a self-adjoint extension of K unless b is given by (59).

(iv) From (58), we see that if b = 0 then m; = m,. Thus, without the presence of the b3'(x)
term, the problem of the existence of a bound state for a delta well with a mass jump at
the same point does not make sense. Note that, in any case, b must be of the form (59).

(v) Let us consider the equal limit mass of the matrix 7 in (53):

K2 +mb
n* —mb 0
T, = —mn ) (60)
° 2amh? B —mb
nt—m2b2 h?+mb
These are the boundary conditions that determine the domain of self-adjointness of H in
(53) having constant mass, m; = my = m. Restriction (59) for b is not valid in this case,
although b cannot be either i2/m or —h?/m. Although the result in [3] is presented into
a more general setting, formula (60) follows straightforwardly.

5. Concluding remarks

We have initiated the study of one-dimensional quantum systems with a mass jump at one
point plus a singular potential at the same point. This singularity has been formerly proposed
to be a Dirac delta well. The idea was that if a Dirac delta well had a unique bound state
in the case of constant mass, this property should be kept when the mass is constant at each
side of the origin and having a discontinuity at this point. This is essentially true, although
some surprises arise in this study. First of all, twice derivation in the distributional sense of
functions with a discontinuity at the origin, like v (x) in (8), gives a §'(x) term. This term
per se is quite innocent as it would show that ¥ (0+) = ¥ (0—) when b = 0, as it should
be. However, as we have seen, b = 0 necessarily implies that m; = m,, and therefore, the
discussion of the delta well with a mass jump necessarily includes the presence of the b38'(x)
term in the potential. The existence of a discontinuity in the wavefunctions solutions of the
Schrédinger equation is due to the mass jump itself. The need of a distributional derivation in
the Schrodinger equation comes after the presence of a singular potential.

The presence of a §’(x) has to be tackled with care, as no unique definition for a singular
potential with such a term exists in the literature, even in the constant mass case. In any case,
we believe that the best way of defining singular potentials is through matching conditions at
the origin for wavefunctions. These matching conditions determine self-adjoint extensions of
the symmetric non-self-adjoint kinetic operator in either the constant or variable mass cases.
These self-adjoint extensions define different Hamiltonians with the same kinetic part and
with singular potentials.

In the case of variable mass, we are faced with the additional difficulty that well-justified
different forms of operating may give quite different results. In this paper, we give two
examples. We have used two different choices for the free Hamiltonian with a mass jump at
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the origin: K = 1m®(x)pm# (x) pm®(x), 2e.+ B = —1 or K = #(x) p?, where m(x) is the
function giving the mass in terms of the position (here we use (4) only). Both provide one
self-adjoint extension that could be in each case a good candidate for the one-dimensional
Hamiltonian with a mass jump at the origin and a potential V (x) = —ad(x) + b§’(x). This
can be seen from the manipulations carried over all the discussion and by the fact that both
give the same results in the equal masses limit m; = m, = m. These results coincide with the
results obtained for H = p2 /2m — ad(x) + b8’ (x). Since we have used different choices for
the kinetic term, both approaches give different results and in particular different energies for
the (unique) bound state.
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